Superlinear Kirchhoff-type problems of the fractional p-Laplacian without the (AR) condition
نویسندگان
چکیده
منابع مشابه
The Kirchhoff Equation for the P – Laplacian
wt t (t, x)− K (‖wx (t, ·)‖ β Lr (R))a(wx (t, x))wxx (t, x) = 0, (2) w(0, x) = 8(x), wt (0, x) = 9(x), where K is an arbitrary function, sufficiently smooth and taking only positive values; and a = a(s) behaves like |s|p−2 near s = 0. The detailed assumptions on K , r , β, and a are given in (3), (4) and Condition 1 below. For K = K (s) = c1 + c2s (c1, c2 > 0) and p = r = β = 2, we get the famo...
متن کاملOn a p-Laplacian system and a generalization of the Landesman-Lazer type condition
This article shows the existence of weak solutions of a resonance problem for nonuniformly p-Laplacian system in a bounded domain in $mathbb{R}^N$. Our arguments are based on the minimum principle and rely on a generalization of the Landesman-Lazer type condition.
متن کاملExistence and Multiplicity of Solutions for p-Laplacian Equations without the AR Condition
The Ambrosetti-Rabinowitz (AR) condition is crucial in variational methods. In this paper we consider a class of p-Laplacian equations without the AR condition. Using Mountain pass lemma and Ekeland variational principle, we obtain the existence and multiplicity of the solutions. These results complement some known results.
متن کاملthe investigation of the relationship between type a and type b personalities and quality of translation
چکیده ندارد.
On superlinear problems without Ambrosetti and Rabinowitz condition
Existence and multiplicity results are obtained for superlinear p-Laplacian equations without the Ambrosetti and Rabinowitz condition. To overcome the difficulty that the Palais-Smale sequences of the EulerLagrange functional may be unbounded, we consider the Cerami sequences. Our results extend the recent results of Miyagaki and Souto [ J. Differential Equations 245 (2008), 3628–3638].
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2018
ISSN: 1687-2770
DOI: 10.1186/s13661-018-1100-1